Remoción de florfenicol mediante la biomasa no viva de Scenedesmus obliquus.
Contenido principal del artículo
Resumen
El uso de los antibióticos en población humana y sus usos veterinarios han generado un grave problema ambiental de proporciones mundiales (Awad et al., 2014).. Como es el caso del florfenicol utilizado frecuentemente para la prevención de enfermedades respiratorias en el ganado porcino (Ciprián et al., 2012).. En este trabajo se planteó un estudio experimental de la remoción del antibiótico florfenicol en metanol, mediante la biomasa no viva y residual de la microalga Scenedusmus obliquus. Su capacidad adsortiva mostró un perfil temporal que se ajustó todos los modelos cinéticos (R2=0.96). Esto reveló la coexistencia de los procesos de fisisorción y quimisorción. El último mostró interacción entre los adsorbatos. La isoterma de adsorción reveló adsorción en monocapa con sitios homogéneos debido al mejor ajuste a la isoterma de Langmuir (R2=0.96). La capacidad de adsorción máxima fue 16.4 mg/g. La comparación de las propiedades de adsorción en la biomasa no viva permitió evaluar la factibilidad del uso de la biomasa como adsorbente para la eliminación de esta clase de contaminantes emergentes.
Descargas
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Para usos académicos y científicos, Iniciación Científica provee el acceso abierto de sus obras a través de licenciamientos Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Unported License. o afines con las siguientes características: Atribución – No comercial – Sin derivar - Compartir igual.
Citas
Abramova, A. A., Isakov, V. G., Grakhova, E. v, & Nepogodin, A. M. (2020). Methods for detection of antibiotics in urban wastewater. IOP Conference Series: Materials Science and Engineering, 862(6), 062059. https://doi.org/10.1088/1757-899X/862/6/062059
Ahmad, I., Abdullah, N., Koji, I., Yuzir, A., & Mohamad, S. E. (2021). Potential of Microalgae in Bioremediation of Wastewater. Bulletin of Chemical Reaction Engineering & Catalysis, 16(2), 413–429. https://doi.org/10.9767/bcrec.16.2.10616.413-429
Ajala, S. O., & Alexander, M. L. (2020). Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. International Journal of Energy and Environmental Engineering, 11(3), 311–326. https://doi.org/10.1007/s40095-019-00333-0
Ata, A., Nalcaci, O. O., & Ovez, B. (2012). Macro algae Gracilaria verrucosa as a biosorbent: A study of sorption mechanisms. Algal Research, 1(2), 194–204. https://doi.org/10.1016/j.algal.2012.07.001
Awad, Y. M., Kim, S.-C., Abd El-Azeem, S. A. M., Kim, K.-H., Kim, K.-R., Kim, K., Jeon, C., Lee, S. S., & Ok, Y. S. (2014). Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environmental Earth Sciences, 71(3), 1433–1440. https://doi.org/10.1007/s12665-013-2548-z
Bilal, M., Rasheed, T., Sosa-Hernández, J., Raza, A., Nabeel, F., & Iqbal, H. (2018). Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review. Marine Drugs, 16(2), 65. https://doi.org/10.3390/md16020065
Biswal, B. K., & Balasubramanian, R. (2022). Adsorptive removal of sulfonamides, tetracyclines and quinolones from wastewater and water using carbon-based materials: Recent developments and future directions. Journal of Cleaner Production, 349, 131421. https://doi.org/10.1016/j.jclepro.2022.131421
Cáceres, T. P., Megharaj, M., & Naidu, R. (2008). Biodegradation of the Pesticide Fenamiphos by Ten Different Species of Green Algae and Cyanobacteria. Current Microbiology, 57(6), 643–646. https://doi.org/10.1007/s00284-008-9293-7
Cao, Z., Li, H., Lowry, G. v., Shi, X., Pan, X., Xu, X., Henkelman, G., & Xu, J. (2021). Unveiling the Role of Sulfur in Rapid Defluorination of Florfenicol by Sulfidized Nanoscale Zero-Valent Iron in Water under Ambient Conditions. Environmental Science & Technology, 55(4), 2628–2638. https://doi.org/10.1021/acs.est.0c07319
Carisma, N. A. S., Gonzales, R. Y. E., & Lazaro-Llanos, N. (2020). An Investigation on Zinc Biosorption with Agar Extraction Waste from Gracilaria tenuistipitata. KIMIKA, 31(2), 11–26. https://doi.org/10.26534/kimika.v31i2.11-26
Cartaxo, A. da S. B., Albuquerque, M. V. da C., Paula e Silva, M. C. C. de, Rodrigues, R. M. M., Ramos, R. de O., Sátiro, J. R., Lopes, W. S., & Leite, V. D. (2020). CONTAMINANTES EMERGENTES PRESENTES EM ÁGUAS DESTINADAS AO CONSUMO HUMANO: OCORRÊNCIA, IMPLICAÇÕES E TECNOLOGIAS DE TRATAMENTO. Brazilian Journal of Development, 6(8), 61814–61827. https://doi.org/10.34117/bjdv6n8-559
Carvalho, Â. R., Genz Bazana, L. C., Ferrão, M. F., & Fuentefria, A. M. (2021). Curve fitting and linearization of UV–Vis spectrophotometric measurements to estimate yeast in inoculum preparation. Analytical Biochemistry, 625, 114216. https://doi.org/10.1016/j.ab.2021.114216
Castillo Espinoza, A., & Ramírez Velásquez, M. (2021a). Síndrome Reproductivo y Respiratorio Porcino: Una revisión del agente etiológico y su influencia en el comportamiento actual de la enfermedad. Revista de Investigaciones Veterinarias Del Perú, 32(1), e19645. https://doi.org/10.15381/rivep.v32i1.19645
Castillo Espinoza, A., & Ramírez Velásquez, M. (2021b). Síndrome Reproductivo y Respiratorio Porcino: Una revisión del agente etiológico y su influencia en el comportamiento actual de la enfermedad. Revista de Investigaciones Veterinarias Del Perú, 32(1), e19645. https://doi.org/10.15381/rivep.v32i1.19645
Cheng, D., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., Wei, Q., & Wei, D. (2020). A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. Journal of Hazardous Materials, 387, 121682. https://doi.org/10.1016/j.jhazmat.2019.121682
Chinnaiyan, P., Thampi, S. G., Kumar, M., & Mini, K. M. (2018). Pharmaceutical products as emerging contaminant in water: relevance for developing nations and identification of critical compounds for Indian environment. Environmental Monitoring and Assessment, 190(5), 288. https://doi.org/10.1007/s10661-018-6672-9
Ciprián, A., Palacios, J. M., Quintanar, D., Batista, L., Colmenares, G., Cruz, T., Romero, A., Schnitzlein, W., & Mendoza, S. (2012). Florfenicol feed supplemented decrease the clinical effects of Mycoplasma hyopneumoniae experimental infection in swine in México. Research in Veterinary Science, 92(2), 191–196. https://doi.org/10.1016/j.rvsc.2011.01.010
Coimbra, R., Escapa, C., Vázquez, N., Noriega-Hevia, G., & Otero, M. (2018). Utilization of Non-Living Microalgae Biomass from Two Different Strains for the Adsorptive Removal of Diclofenac from Water. Water, 10(10), 1401. https://doi.org/10.3390/w10101401
Danouche, M., el Arroussi, H., Bahafid, W., & el Ghachtouli, N. (2021). An overview of the biosorption mechanism for the bioremediation of synthetic dyes using yeast cells. Environmental Technology Reviews, 10(1), 58–76. https://doi.org/10.1080/21622515.2020.1869839
Deepika, M. S., Thangam, R., Vijayakumar, T. S., Sasirekha, R., Vimala, R. T. V., Sivasubramanian, S., Arun, S., Babu, M. D., & Thirumurugan, R. (2019). Antibacterial synergy between rutin and florfenicol enhances therapeutic spectrum against drug resistant Aeromonas hydrophila. Microbial Pathogenesis, 135, 103612. https://doi.org/10.1016/j.micpath.2019.103612
de Juan, A., & Tauler, R. (2021). Multivariate Curve Resolution: 50 years addressing the mixture analysis problem – A review. Analytica Chimica Acta, 1145, 59–78. https://doi.org/10.1016/j.aca.2020.10.051
Derby, A. P., Huff Hartz, K. E., Fuller, N. W., Landrum, P. F., Reeve, J. D., Poynton, H. C., Connon, R. E., & Lydy, M. J. (2022). Effects of temperature and salinity on bioconcentration and toxicokinetics of permethrin in pyrethroid-resistant Hyalella azteca. Chemosphere, 299, 134393. https://doi.org/10.1016/j.chemosphere.2022.134393
de Souza, L., Lima, A. S., Matos, Â. P., Wheeler, R. M., Bork, J. A., Vieira Cubas, A. L., & Moecke, E. H. S. (2021). Biopolishing sanitary landfill leachate via cultivation of lipid-rich Scenedesmus microalgae. Journal of Cleaner Production, 303, 127094. https://doi.org/10.1016/j.jclepro.2021.127094
Dowling, P. M. (2013). Chloramphenicol, Thiamphenicol, and Florfenicol. In Antimicrobial Therapy in Veterinary Medicine (pp. 269–277). Wiley. https://doi.org/10.1002/9781118675014.ch16
Durão, P., Balbontín, R., & Gordo, I. (2018). Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends in Microbiology, 26(8), 677–691. https://doi.org/10.1016/j.tim.2018.01.005
Ende, S. S. W., & Noke, A. (2019). Heterotrophic microalgae production on food waste and by-products. Journal of Applied Phycology, 31(3), 1565–1571. https://doi.org/10.1007/s10811-018-1697-6
Esmaili, Z., Cheshmberah, F., Solaimany Nazar, A. R., & Farhadian, M. (2017). Treatment of florfenicol of synthetic trout fish farm wastewater through nanofiltration and photocatalyst oxidation. Environmental Technology, 38(16), 2040–2047. https://doi.org/10.1080/09593330.2016.1245359
Freitas, E. C., Rocha, O., & Espíndola, E. L. G. (2018). Effects of florfenicol and oxytetracycline on the tropical cladoceran Ceriodaphnia silvestrii: A mixture toxicity approach to predict the potential risks of antimicrobials for zooplankton. Ecotoxicology and Environmental Safety, 162, 663–672. https://doi.org/10.1016/j.ecoenv.2018.06.073
Ghernaout, D., & Elboughdiri, N. (2019). Water Reuse: Emerging Contaminants Elimination—Progress and Trends. OALib, 06(12), 1–9. https://doi.org/10.4236/oalib.1105981
Giraldo-Zuluaga, J.-H., Salazar, A., Diez, G., Gomez, A., Martínez, T., Vargas, J. F., & Peñuela, M. (2018). Automatic identification of Scenedesmus polymorphic microalgae from microscopic images. Pattern Analysis and Applications, 21(2), 601–612. https://doi.org/10.1007/s10044-017-0662-3
Goodale, A., Michailidis, F., Watts, R., Chok, S. C., & Hayes, F. (2020). Characterization of permissive and non-permissive peptide insertion sites in chloramphenicol acetyltransferase. Microbial Pathogenesis, 149, 104395. https://doi.org/10.1016/j.micpath.2020.104395
Gradmann, C. (n.d.). Magic bullets and moving targets: antibiotic resistance and experimental chemotherapy, 1900-1940.
Guilhermino, L., Vieira, L. R., Ribeiro, D., Tavares, A. S., Cardoso, V., Alves, A., & Almeida, J. M. (2018). Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea. Science of The Total Environment, 622–623, 1131–1142. https://doi.org/10.1016/j.scitotenv.2017.12.020
Guzmán-Blanco, M., Casellas, J. M., & Silva Sader, H. (2000). BACTERIAL RESISTANCE TO ANTIMICROBIAL AGENTS IN LATIN AMERICA. Infectious Disease Clinics of North America, 14(1), 67–81. https://doi.org/10.1016/S0891-5520(05)70218-X
Hossain, N., Zaini, J., Mahlia, T. M. I., & Azad, A. K. (2019). Elemental, morphological and thermal analysis of mixed microalgae species from drain water. Renewable Energy, 131, 617–624. https://doi.org/10.1016/j.renene.2018.07.082
Hosseinizand, H., Sokhansanj, S., & Lim, C. J. (2018). Co-pelletization of microalgae Chlorella vulgaris and pine sawdust to produce solid fuels. Fuel Processing Technology, 177, 129–139. https://doi.org/10.1016/j.fuproc.2018.04.015
Ibrahim, W. M., Karam, M. A., El-Shahat, R. M., & Adway, A. A. (2014). Biodegradation and Utilization of Organophosphorus Pesticide Malathion by Cyanobacteria. BioMed Research International, 2014, 1–6. https://doi.org/10.1155/2014/392682
Javid, A., Mesdaghinia, A., Nasseri, S., Mahvi, A. H., Alimohammadi, M., & Gharibi, H. (2016). Assessment of tetracycline contamination in surface and groundwater resources proximal to animal farming houses in Tehran, Iran. Journal of Environmental Health Science and Engineering, 14(1), 4. https://doi.org/10.1186/s40201-016-0245-z
Jiang, W.-L., Ding, Y.-C., Haider, M. R., Han, J.-L., Liang, B., Xia, X., Yang, L.-M., Wang, H., Peng, Y.-Z., & Wang, A.-J. (2020). A novel TiO2/graphite felt photoanode assisted electro-Fenton catalytic membrane process for sequential degradation of antibiotic florfenicol and elimination of its antibacterial activity. Chemical Engineering Journal, 391, 123503. https://doi.org/10.1016/j.cej.2019.123503
Jin, M., Shan, J., Wang, X., Ren, T., & Li, X. (2022). Determination of Florfenicol in Antibiotic Mixtures by Solid-Phase Extraction (SPE) and Surface-Enhanced Raman Scattering (SERS). Analytical Letters, 55(4), 517–528. https://doi.org/10.1080/00032719.2021.1946075
Gutiérrez Muñoz, J. (2021). Costos de inversión y beneficios del tratamiento de aguas residuales domésticas en el Municipio de Zipaquirá.
Hoyos-Leyva, J. D., Daza-Orozco, C. E., & Norman-Acevedo, E. (2024). De preguntas a soluciones: Innovación y sostenibilidad. Libros IC, 77(84), 1–151. https://doi.org/10.15765/librosic.v77i84.55
Kaloudas, D., Pavlova, N., & Penchovsky, R. (2021). Phycoremediation of wastewater by microalgae: a review. Environmental Chemistry Letters, 19(4), 2905–2920. https://doi.org/10.1007/s10311-021-01203-0
Karim Dizani, S., Torkian, L., Khodadadi, Z., Fazaeli, R., & Safa, S. (2021). Fabrication of cubic In 2 O 3 / Bi 2 WO 6 and study of its photocatalytic performance in removal of florfenicol antibiotic from aqueous media: Experimental and molecular dynamic simulation. Journal of the Chinese Chemical Society, 68(2), 263–273. https://doi.org/10.1002/jccs.202000116
Kar, S., Sanderson, H., Roy, K., Benfenati, E., & Leszczynski, J. (2020). Ecotoxicological assessment of pharmaceuticals and personal care products using predictive toxicology approaches. Green Chemistry, 22(5), 1458–1516. https://doi.org/10.1039/C9GC03265G
Knoshaug, E. P., Nag, A., Astling, D. P., Douchi, D., & Laurens, L. M. L. (2020). Draft Genome Sequence of the Biofuel-Relevant Microalga Desmodesmus armatus. Microbiology Resource Announcements, 9(6). https://doi.org/10.1128/MRA.00896-19
Kuppusamy, S., Kakarla, D., Venkateswarlu, K., Megharaj, M., Yoon, Y.-E., & Lee, Y. B. (2018). Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agriculture, Ecosystems & Environment, 257, 47–59. https://doi.org/10.1016/j.agee.2018.01.026
Largitte, L., & Pasquier, R. (2016). A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design, 109, 495–504. https://doi.org/10.1016/j.cherd.2016.02.006
Larsen, C., Yu, Z. H., Flick, R., & Passeport, E. (2019). Mechanisms of pharmaceutical and personal care product removal in algae-based wastewater treatment systems. Science of The Total Environment, 695, 133772. https://doi.org/10.1016/j.scitotenv.2019.133772
Leng, L., Wei, L., Xiong, Q., Xu, S., Li, W., Lv, S., Lu, Q., Wan, L., Wen, Z., & Zhou, W. (2020). Use of microalgae based technology for the removal of antibiotics from wastewater: A review. Chemosphere, 238, 124680. https://doi.org/10.1016/J.CHEMOSPHERE.2019.124680
Li, H., Chen, S., Liao, K., Lu, Q., & Zhou, W. (2021). Microalgae biotechnology as a promising pathway to ecofriendly aquaculture: a state‐of‐the‐art review. Journal of Chemical Technology & Biotechnology, 96(4), 837–852. https://doi.org/10.1002/jctb.6624
Lin, Y., Abraham, J., RoyChowdhury, A., Su, T.-L., Braida, W., & Christodoulatos, C. (2020). Ecotoxicological response of Scenedesmus obliquus to pure energetic compounds and metal ions found in wastewater streams from munitions manufacturing. Algal Research, 48, 101927. https://doi.org/10.1016/j.algal.2020.101927
Li, P., Zhu, T., Zhou, D., Lu, W., Liu, H., Sun, Z., Ying, J., Lu, J., Lin, X., Li, K., Ying, J., Bao, Q., & Xu, T. (2020). Analysis of Resistance to Florfenicol and the Related Mechanism of Dissemination in Different Animal-Derived Bacteria. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00369
Liu, H., Wei, Y., Luo, J., Li, T., Wang, D., Luo, S., & Crittenden, J. C. (2019). 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water. Chemical Engineering Journal, 368, 639–648. https://doi.org/10.1016/j.cej.2019.03.007
Liu, X., Lu, S., Guo, W., Xi, B., & Wang, W. (2018). Antibiotics in the aquatic environments: A review of lakes, China. Science of The Total Environment, 627, 1195–1208. https://doi.org/10.1016/j.scitotenv.2018.01.271
López-Pacheco, I. Y., Silva-Núñez, A., Salinas-Salazar, C., Arévalo-Gallegos, A., Lizarazo-Holguin, L. A., Barceló, D., Iqbal, H. M. N., & Parra-Saldívar, R. (2019). Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. Science of The Total Environment, 690, 1068–1088. https://doi.org/10.1016/j.scitotenv.2019.07.052
Mallek-Ayadi, S., Bahloul, N., & Kechaou, N. (2020). Mathematical modelling of water sorption isotherms and thermodynamic properties of Cucumis melo L. seeds. LWT, 131, 109727. https://doi.org/10.1016/j.lwt.2020.109727
Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157(11), 2893–2902. https://doi.org/10.1016/j.envpol.2009.05.051
Maryjoseph, S., & Ketheesan, B. (2020). Microalgae based wastewater treatment for the removal of emerging contaminants: A review of challenges and opportunities. Case Studies in Chemical and Environmental Engineering, 2, 100046. https://doi.org/10.1016/j.cscee.2020.100046
Mills, M. C., & Lee, J. (2019). The threat of carbapenem-resistant bacteria in the environment: Evidence of widespread contamination of reservoirs at a global scale. Environmental Pollution, 255, 113143. https://doi.org/10.1016/j.envpol.2019.113143
Mitchell, S. M., Subbiah, M., Ullman, J. L., Frear, C., & Call, D. R. (2015). Evaluation of 27 different biochars for potential sequestration of antibiotic residues in food animal production environments. Journal of Environmental Chemical Engineering, 3(1), 162–169. https://doi.org/10.1016/j.jece.2014.11.012
Moore, F. D. (1999). The advent of antibiotics: Episodes from the early days of the “miracle drugs.” Surgery, 126(1), 83–84. https://doi.org/10.1067/msy.1999.98701
Multivariate Curve Resolution Homepage. (2021). MCR-ALS 2.0 toolbox.
Mustafa, S., Bhatti, H. N., Maqbool, M., & Iqbal, M. (2021). Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: Prospects, challenges and opportunities. Journal of Water Process Engineering, 41, 102009. https://doi.org/10.1016/j.jwpe.2021.102009
Ngigi, A. N., Ok, Y. S., & Thiele-Bruhn, S. (2019). Biochar-mediated sorption of antibiotics in pig manure. Journal of Hazardous Materials, 364, 663–670. https://doi.org/10.1016/j.jhazmat.2018.10.045
Nicolaou, K. C., & Rigol, S. (2018). A brief history of antibiotics and select advances in their synthesis. The Journal of Antibiotics, 71(2), 153–184. https://doi.org/10.1038/ja.2017.62
Nie, J., Sun, Y., Zhou, Y., Kumar, M., Usman, M., Li, J., Shao, J., Wang, L., & Tsang, D. C. W. (2020). Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Science of The Total Environment, 707, 136080. https://doi.org/10.1016/j.scitotenv.2019.136080
Ortiz-Villota, M. T., Romero-Morales, M. A., & Meza-Rodríguez, L. D. (2018). La biorremediación con microalgas (Spirulina máxima, Spirulina platensis y Chlorella vulgaris) como alternativa para tratar la eutrofización de la laguna de Ubaque, Colombia. Revista de Investigación, Desarrollo e Innovación, 9(1), 163–176. https://doi.org/10.19053/20278306.v9.n1.2018.8153
Parades-Aguilar, J., Reyes-Martínez, V., Bustamante, G., Almendáriz-Tapia, F. J., Martínez-Meza, G., Vílchez-Vargas, R., Link, A., Certucha-Barragán, M. T., & Calderón, K. (2021). Removal of nickel(II) from wastewater using a zeolite-packed anaerobic bioreactor: Bacterial diversity and community structure shifts. Journal of Environmental Management, 279, 111558. https://doi.org/10.1016/j.jenvman.2020.111558
Partovinia, A., & Rasekh, B. (2018). Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments. Critical Reviews in Environmental Science and Technology, 48(1), 1–38. https://doi.org/10.1080/10643389.2018.1439652
Peña-Guzmán, C., Ulloa-Sánchez, S., Mora, K., Helena-Bustos, R., Lopez-Barrera, E., Alvarez, J., & Rodriguez-Pinzón, M. (2019). Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. Journal of Environmental Management, 237, 408–423. https://doi.org/10.1016/j.jenvman.2019.02.100
Peng, G., He, Q., Al-Hamadani, S. M. Z. F., Zhou, G., Liu, M., Zhu, H., & Chen, J. (2015). Dispersive liquid–liquid microextraction method based on solidification of floating organic droplet for the determination of thiamphenicol and florfenicol in environmental water samples. Ecotoxicology and Environmental Safety, 115, 229–233. https://doi.org/10.1016/j.ecoenv.2015.02.025
Pokrant, E., Riquelme, R., Maddaleno, A., San Martín, B., & Cornejo, J. (2018). Residue Depletion of Florfenicol and Florfenicol Amine in Broiler Chicken Claws and a Comparison of Their Concentrations in Edible Tissues Using LC–MS/MS. Molecules, 23(9), 2211. https://doi.org/10.3390/molecules23092211
Qiu, J., Liu, Q., Zhang, M., Li, X., Zhang, J., Xiong, R., & He, L. (2020). Simultaneous Determination of Aminoglycoside Residues in Environmental Water Matrices by Lyophilization Combined with Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS). Analytical Letters, 53(14), 2235–2251. https://doi.org/10.1080/00032719.2020.1734606
Ramírez S, J. A., Parra V., J. A., & Alvarez Aldana, A. (2017). Análisis de técnicas de recuento de Microorganismos. Mente Joven, 6, 01–08. https://doi.org/10.18041/2323-0312/mente_joven.0.2017.3665
Ribeiro, A. R., Sures, B., & Schmidt, T. C. (2018). Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies. Environmental Pollution, 241, 1153–1166. https://doi.org/10.1016/j.envpol.2018.06.040
Richardson, S. D., & Kimura, S. Y. (2020). Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry, 92(1), 473–505. https://doi.org/10.1021/acs.analchem.9b05269
Rodas-Zuluaga, L. I., Castañeda-Hernández, L., Castillo-Vacas, E. I., Gradiz-Menjivar, A., López-Pacheco, I. Y., Castillo-Zacarías, C., Boully, L., Iqbal, H. M. N., & Parra-Saldívar, R. (2021). Bio-capture and influence of CO2 on the growth rate and biomass composition of the microalgae Botryococcus braunii and Scenedesmus sp. Journal of CO2 Utilization, 43, 101371. https://doi.org/10.1016/j.jcou.2020.101371
Rodríguez, A., Castrejón-Godínez, M. L., Salazar-Bustamante, E., Gama-Martínez, Y., Sánchez-Salinas, E., Mussali-Galante, P., Tovar-Sánchez, E., & Ortiz-Hernández, Ma. L. (2020). Omics Approaches to Pesticide Biodegradation. Current Microbiology, 77(4), 545–563. https://doi.org/10.1007/s00284-020-01916-5
Rodríguez Moreira, D. S., & Villarreal Lozada, G. S. (2020). Estudio comparativo de dos medios de cultivo (guillard f/2 vs. medio erd-schreiber) y su efecto en el crecimiento de diatomeas del sector de Mar Bravo - provincia de Santa Elena. Universidad Estatal Península de Santa Elena.
Sadeghi, M., Sadeghi, R., Ghasemi, B., Mardani, G., & Ahmadi, A. (2018). Removal of Azithromycin from Aqueous Solution Using UV-Light Alone and UV Plus Persulfate (UV/Na2S2O8) Processes. Iranian Journal of Pharmaceutical Research, 54–64.
Sahu, O., & Singh, N. (2019). Significance of bioadsorption process on textile industry wastewater. In The Impact and Prospects of Green Chemistry for Textile Technology (pp. 367–416). Elsevier. https://doi.org/10.1016/B978-0-08-102491-1.00013-7
Santaeufemia, S. (2019). Aplicación de técnicas de biorremediación para la eliminación de contaminantes mediante el uso de biomasa microalgal. Universidade da Coruña.
Serna-Galvis, E., Martínez-Mena, Y. L., Porras, J., & Torres-Palma, R. A. (2021). Antibióticos de alto consumo en Colombia, excreción en orina y presencia en aguas residuales – una revisión bibliográfica. INGENIERÍA Y COMPETITIVIDAD, 24(1). https://doi.org/10.25100/iyc.v24i1.11267
Shiroma, L. S., Soares, M. P., Cardoso, I. L., Ishikawa, M. M., Jonsson, C. M., & Nascimento Queiroz, S. C. (2020). Evaluation of health and environmental risks for juvenile tilapia (Oreochromis niloticus) exposed to florfenicol. Heliyon, 6(12), e05716. https://doi.org/10.1016/j.heliyon.2020.e05716
Silva, A., Coimbra, R. N., Escapa, C., Figueiredo, S. A., Freitas, O. M., & Otero, M. (2020). Green Microalgae Scenedesmus Obliquus Utilization for the Adsorptive Removal of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) from Water Samples. International Journal of Environmental Research and Public Health, 17(10), 3707. https://doi.org/10.3390/ijerph17103707
Soares, J., Kriiger Loterio, R., Rosa, R. M., Santos, M. O., Nascimento, A. G., Santos, N. T., Williams, T. C. R., Nunes-Nesi, A., & Arêdes Martins, M. (2018). Scenedesmus sp. cultivation using commercial-grade ammonium sources. Annals of Microbiology, 68(1), 35–45. https://doi.org/10.1007/s13213-017-1315-x
Song, C., Wei, Y., Qiu, Y., Qi, Y., Li, Y., & Kitamura, Y. (2019a). Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38: Experimental study. Bioresource Technology, 272, 529–534. https://doi.org/10.1016/j.biortech.2018.10.080
Song, C., Wei, Y., Qiu, Y., Qi, Y., Li, Y., & Kitamura, Y. (2019b). Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38: Experimental study. Bioresource Technology, 272, 529–534. https://doi.org/10.1016/j.biortech.2018.10.080
Song, X., Zhou, T., Li, J., Zhang, M., Xie, J., & He, L. (2018). Determination of Ten Macrolide Drugs in Environmental Water Using Molecularly Imprinted Solid-Phase Extraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry. Molecules, 23(5), 1172. https://doi.org/10.3390/molecules23051172
Suárez-Martínez, D., Angulo-Mercado, E., Mercado-Martínez, I., Vacca-Jimeno, V., Tapia-Larios, C., & Cubillán, N. (2022). Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass. ACS Omega, acsomega.2c00696. https://doi.org/10.1021/acsomega.2c00696
Syafrudin, M., Kristanti, R. A., Yuniarto, A., Hadibarata, T., Rhee, J., Al-onazi, W. A., Algarni, T. S., Almarri, A. H., & Al-Mohaimeed, A. M. (2021). Pesticides in Drinking Water—A Review. International Journal of Environmental Research and Public Health, 18(2), 468. https://doi.org/10.3390/ijerph18020468
Tao, W., Lee, M. H., Wu, J., Kim, N. H., Kim, J.-C., Chung, E., Hwang, E. C., & Lee, S.-W. (2012). Inactivation of Chloramphenicol and Florfenicol by a Novel Chloramphenicol Hydrolase. Applied and Environmental Microbiology, 78(17), 6295–6301. https://doi.org/10.1128/AEM.01154-12
Trivedi, H. K. (2013). A Rapid Validated RP-HPLC Method for the Simultaneous Determination of Cleaning Validation and Cross Contamination of 12 Beta-Lactam Compounds. Scientia Pharmaceutica, 81(1), 151–165. https://doi.org/10.3797/scipharm.1208-20
Ummalyma, S. B., Pandey, A., Sukumaran, R. K., & Sahoo, D. (2018). Bioremediation by Microalgae: Current and Emerging Trends for Effluents Treatments for Value Addition of Waste Streams (pp. 355–375). https://doi.org/10.1007/978-981-10-7434-9_19
Vandael, F., de Carvalho Ferreira, H. C., Devreese, M., Dewulf, J., Daeseleire, E., Eeckhout, M., & Croubels, S. (2020). Stability, Homogeneity and Carry-Over of Amoxicillin, Doxycycline, Florfenicol and Flubendazole in Medicated Feed and Drinking Water on 24 Pig Farms. Antibiotics, 9(9), 563. https://doi.org/10.3390/antibiotics9090563
Wang, C., Dong, D., Zhang, L., Song, Z., Hua, X., & Guo, Z. (2019). Response of Freshwater Biofilms to Antibiotic Florfenicol and Ofloxacin Stress: Role of Extracellular Polymeric Substances. International Journal of Environmental Research and Public Health, 16(5), 715. https://doi.org/10.3390/ijerph16050715
Wang, C.-H., Hsieh, Y.-H., Powers, Z. M., & Kao, C.-Y. (2020). Defeating Antibiotic-Resistant Bacteria: Exploring Alternative Therapies for a Post-Antibiotic Era. International Journal of Molecular Sciences, 21(3), 1061. https://doi.org/10.3390/ijms21031061
Wang, J., & Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279. https://doi.org/10.1016/j.chemosphere.2020.127279
Wang, S., Yerkebulan, M., Abomohra, A. E.-F., El-Khodary, S., & Wang, Q. (2019). Microalgae harvest influences the energy recovery: A case study on chemical flocculation of Scenedesmus obliquus for biodiesel and crude bio-oil production. Bioresource Technology, 286, 121371. https://doi.org/10.1016/j.biortech.2019.121371
Wang, X. D., Lu, Y. C., Xiong, X. H., Yuan, Y., Lu, L. X., Liu, Y. J., Mao, J. H., & Xiao, W. W. (2020). Toxicological responses, bioaccumulation, and metabolic fate of triclosan in Chlamydomonas reinhardtii. Environmental Science and Pollution Research, 27(10), 11246–11259. https://doi.org/10.1007/s11356-020-07704-9
Wang, Y., Zhang, L., Ahmed, S., Liu, Y., & Li, X. (2018). Pharmacokinetic of florfenicol in pulmonary epithelial lining fluid of swine and effects of anesthetic agent on drug plasma disposition kinetics. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 70(5), 1497–1504. https://doi.org/10.1590/1678-4162-9770
Wei, R., Ge, F., Chen, M., & Wang, R. (2012). Occurrence of Ciprofloxacin, Enrofloxacin, and Florfenicol in Animal Wastewater and Water Resources. Journal of Environmental Quality, 41(5), 1481–1486. https://doi.org/10.2134/jeq2012.0014
Xiong, J.-Q., Kim, S.-J., Kurade, M. B., Govindwar, S., Abou-Shanab, R. A. I., Kim, J.-R., Roh, H.-S., Khan, M. A., & Jeon, B.-H. (2019). Combined effects of sulfamethazine and sulfamethoxazole on a freshwater microalga, Scenedesmus obliquus: toxicity, biodegradation, and metabolic fate. Journal of Hazardous Materials, 370, 138–146. https://doi.org/10.1016/j.jhazmat.2018.07.049
Xiong, Q., Hu, L. X., Liu, Y. S., Zhao, J. L., He, L. Y., & Ying, G. G. (2021). Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. Environment International, 155, 106594. https://doi.org/10.1016/J.ENVINT.2021.106594
Yang, X., Xu, G., Yu, H., & Zhang, Z. (2016). Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal. Bioresource Technology, 211, 566–573. https://doi.org/10.1016/j.biortech.2016.03.140
Yang, Y., Li, T., Yan, L., Yu, Y., Wang, S., Li, C., Wen, Y., & Zhao, Y. (2018). Investigation on the relationship between critical body residue and bioconcentration in zebrafish based on bio-uptake kinetics for five nitro-aromatics. Regulatory Toxicology and Pharmacology, 98, 18–23. https://doi.org/10.1016/j.yrtph.2018.07.002
Yévenes, K., Pokrant, E., Pérez, F., Riquelme, R., Avello, C., Maddaleno, A., Martín, B. S., & Cornejo, J. (2018). Assessment of Three Antimicrobial Residue Concentrations in Broiler Chicken Droppings as a Potential Risk Factor for Public Health and Environment. International Journal of Environmental Research and Public Health, 16(1), 24. https://doi.org/10.3390/ijerph16010024
Zambrano, J., García-Encina, P. A., Hernández, F., Botero-Coy, A. M., Jiménez, J. J., & Irusta-Mata, R. (2021). Removal of a mixture of veterinary medicinal products by adsorption onto a Scenedesmus almeriensis microalgae-bacteria consortium. Journal of Water Process Engineering, 43, 102226. https://doi.org/10.1016/J.JWPE.2021.102226
Zhao, H., & Lang, Y. (2018). Adsorption behaviors and mechanisms of florfenicol by magnetic functionalized biochar and reed biochar. Journal of the Taiwan Institute of Chemical Engineers, 88, 152–160. https://doi.org/10.1016/j.jtice.2018.03.049
Zhao, H., Liu, X., Cao, Z., Zhan, Y., Shi, X., Yang, Y., Zhou, J., & Xu, J. (2016). Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. Journal of Hazardous Materials, 310, 235–245. https://doi.org/10.1016/j.jhazmat.2016.02.045
Zheng, C., Zheng, H., Hu, C., Wang, Y., Wang, Y., Zhao, C., Ding, W., & Sun, Q. (2020). Structural design of magnetic biosorbents for the removal of ciprofloxacin from water. Bioresource Technology, 296, 122288. https://doi.org/10.1016/j.biortech.2019.122288
Zhou, D., Li, Y., Huang, L., Qian, M., Li, D., Sun, G., & Yang, B. (2020). A reliable and cost-efficient TLC-HPLC method for determining total florfenicol residues in porcine edible tissues. Food Chemistry, 303, 125399. https://doi.org/10.1016/j.foodchem.2019.125399
Zhou, X., Jin, W., Tu, R., Guo, Q., Han, S. fang, Chen, C., Wang, Q., Liu, W., Jensen, P. D., & Wang, Q. (2019). Optimization of microwave assisted lipid extraction from microalga Scenedesmus obliquus grown on municipal wastewater. Journal of Cleaner Production, 221. https://doi.org/10.1016/j.jclepro.2019.02.260