Remoción de florfenicol mediante la biomasa no viva de Scenedesmus obliquus.

Contenido principal del artículo

Rafael Wadnipar Cano

Resumen

El uso de los antibióticos en población humana y sus usos veterinarios han generado un grave problema ambiental de proporciones mundiales (Awad et al., 2014).. Como es el caso del florfenicol utilizado frecuentemente para la prevención de enfermedades respiratorias en el ganado porcino (Ciprián et al., 2012).. En este trabajo se planteó un estudio experimental de la remoción del antibiótico florfenicol en metanol, mediante la biomasa no viva y residual de la microalga Scenedusmus obliquus. Su capacidad adsortiva mostró un perfil temporal que se ajustó todos los modelos cinéticos (R2=0.96). Esto reveló la coexistencia de los procesos de fisisorción y quimisorción. El último mostró interacción entre los adsorbatos. La isoterma de adsorción reveló adsorción en monocapa con sitios homogéneos debido al mejor ajuste a la isoterma de Langmuir (R2=0.96). La capacidad de adsorción máxima fue 16.4 mg/g. La comparación de las propiedades de adsorción en la biomasa no viva permitió evaluar la factibilidad del uso de la biomasa como adsorbente para la eliminación de esta clase de contaminantes emergentes.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Wadnipar Cano, R. (2024). Remoción de florfenicol mediante la biomasa no viva de Scenedesmus obliquus. NeoScientia, 1(2). https://doi.org/10.15765/ns.v1i2.35
Sección
Ciencias naturales y agrícolas
Biografía del autor/a

Rafael Wadnipar Cano, Institución Educativa Distrital Gabriel García Márquez

Magister en ciencias Ambientales – Universidad del Atlántico. Licenciatura en Biología y química – Universidad del Atlántico. Docente de ciencias naturales.

Citas

Abramova, A. A., Isakov, V. G., Grakhova, E. v, & Nepogodin, A. M. (2020). Methods for detection of antibiotics in urban wastewater. IOP Conference Series: Materials Science and Engineering, 862(6), 062059. https://doi.org/10.1088/1757-899X/862/6/062059

Ahmad, I., Abdullah, N., Koji, I., Yuzir, A., & Mohamad, S. E. (2021). Potential of Microalgae in Bioremediation of Wastewater. Bulletin of Chemical Reaction Engineering & Catalysis, 16(2), 413–429. https://doi.org/10.9767/bcrec.16.2.10616.413-429

Ajala, S. O., & Alexander, M. L. (2020). Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. International Journal of Energy and Environmental Engineering, 11(3), 311–326. https://doi.org/10.1007/s40095-019-00333-0

Ata, A., Nalcaci, O. O., & Ovez, B. (2012). Macro algae Gracilaria verrucosa as a biosorbent: A study of sorption mechanisms. Algal Research, 1(2), 194–204. https://doi.org/10.1016/j.algal.2012.07.001

Awad, Y. M., Kim, S.-C., Abd El-Azeem, S. A. M., Kim, K.-H., Kim, K.-R., Kim, K., Jeon, C., Lee, S. S., & Ok, Y. S. (2014). Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environmental Earth Sciences, 71(3), 1433–1440. https://doi.org/10.1007/s12665-013-2548-z

Bilal, M., Rasheed, T., Sosa-Hernández, J., Raza, A., Nabeel, F., & Iqbal, H. (2018). Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review. Marine Drugs, 16(2), 65. https://doi.org/10.3390/md16020065

Biswal, B. K., & Balasubramanian, R. (2022). Adsorptive removal of sulfonamides, tetracyclines and quinolones from wastewater and water using carbon-based materials: Recent developments and future directions. Journal of Cleaner Production, 349, 131421. https://doi.org/10.1016/j.jclepro.2022.131421

Cáceres, T. P., Megharaj, M., & Naidu, R. (2008). Biodegradation of the Pesticide Fenamiphos by Ten Different Species of Green Algae and Cyanobacteria. Current Microbiology, 57(6), 643–646. https://doi.org/10.1007/s00284-008-9293-7

Cao, Z., Li, H., Lowry, G. v., Shi, X., Pan, X., Xu, X., Henkelman, G., & Xu, J. (2021). Unveiling the Role of Sulfur in Rapid Defluorination of Florfenicol by Sulfidized Nanoscale Zero-Valent Iron in Water under Ambient Conditions. Environmental Science & Technology, 55(4), 2628–2638. https://doi.org/10.1021/acs.est.0c07319

Carisma, N. A. S., Gonzales, R. Y. E., & Lazaro-Llanos, N. (2020). An Investigation on Zinc Biosorption with Agar Extraction Waste from Gracilaria tenuistipitata. KIMIKA, 31(2), 11–26. https://doi.org/10.26534/kimika.v31i2.11-26

Cartaxo, A. da S. B., Albuquerque, M. V. da C., Paula e Silva, M. C. C. de, Rodrigues, R. M. M., Ramos, R. de O., Sátiro, J. R., Lopes, W. S., & Leite, V. D. (2020). CONTAMINANTES EMERGENTES PRESENTES EM ÁGUAS DESTINADAS AO CONSUMO HUMANO: OCORRÊNCIA, IMPLICAÇÕES E TECNOLOGIAS DE TRATAMENTO. Brazilian Journal of Development, 6(8), 61814–61827. https://doi.org/10.34117/bjdv6n8-559

Carvalho, Â. R., Genz Bazana, L. C., Ferrão, M. F., & Fuentefria, A. M. (2021). Curve fitting and linearization of UV–Vis spectrophotometric measurements to estimate yeast in inoculum preparation. Analytical Biochemistry, 625, 114216. https://doi.org/10.1016/j.ab.2021.114216

Castillo Espinoza, A., & Ramírez Velásquez, M. (2021a). Síndrome Reproductivo y Respiratorio Porcino: Una revisión del agente etiológico y su influencia en el comportamiento actual de la enfermedad. Revista de Investigaciones Veterinarias Del Perú, 32(1), e19645. https://doi.org/10.15381/rivep.v32i1.19645

Castillo Espinoza, A., & Ramírez Velásquez, M. (2021b). Síndrome Reproductivo y Respiratorio Porcino: Una revisión del agente etiológico y su influencia en el comportamiento actual de la enfermedad. Revista de Investigaciones Veterinarias Del Perú, 32(1), e19645. https://doi.org/10.15381/rivep.v32i1.19645

Cheng, D., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., Wei, Q., & Wei, D. (2020). A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. Journal of Hazardous Materials, 387, 121682. https://doi.org/10.1016/j.jhazmat.2019.121682

Chinnaiyan, P., Thampi, S. G., Kumar, M., & Mini, K. M. (2018). Pharmaceutical products as emerging contaminant in water: relevance for developing nations and identification of critical compounds for Indian environment. Environmental Monitoring and Assessment, 190(5), 288. https://doi.org/10.1007/s10661-018-6672-9

Ciprián, A., Palacios, J. M., Quintanar, D., Batista, L., Colmenares, G., Cruz, T., Romero, A., Schnitzlein, W., & Mendoza, S. (2012). Florfenicol feed supplemented decrease the clinical effects of Mycoplasma hyopneumoniae experimental infection in swine in México. Research in Veterinary Science, 92(2), 191–196. https://doi.org/10.1016/j.rvsc.2011.01.010

Coimbra, R., Escapa, C., Vázquez, N., Noriega-Hevia, G., & Otero, M. (2018). Utilization of Non-Living Microalgae Biomass from Two Different Strains for the Adsorptive Removal of Diclofenac from Water. Water, 10(10), 1401. https://doi.org/10.3390/w10101401

Danouche, M., el Arroussi, H., Bahafid, W., & el Ghachtouli, N. (2021). An overview of the biosorption mechanism for the bioremediation of synthetic dyes using yeast cells. Environmental Technology Reviews, 10(1), 58–76. https://doi.org/10.1080/21622515.2020.1869839

Deepika, M. S., Thangam, R., Vijayakumar, T. S., Sasirekha, R., Vimala, R. T. V., Sivasubramanian, S., Arun, S., Babu, M. D., & Thirumurugan, R. (2019). Antibacterial synergy between rutin and florfenicol enhances therapeutic spectrum against drug resistant Aeromonas hydrophila. Microbial Pathogenesis, 135, 103612. https://doi.org/10.1016/j.micpath.2019.103612

de Juan, A., & Tauler, R. (2021). Multivariate Curve Resolution: 50 years addressing the mixture analysis problem – A review. Analytica Chimica Acta, 1145, 59–78. https://doi.org/10.1016/j.aca.2020.10.051

Derby, A. P., Huff Hartz, K. E., Fuller, N. W., Landrum, P. F., Reeve, J. D., Poynton, H. C., Connon, R. E., & Lydy, M. J. (2022). Effects of temperature and salinity on bioconcentration and toxicokinetics of permethrin in pyrethroid-resistant Hyalella azteca. Chemosphere, 299, 134393. https://doi.org/10.1016/j.chemosphere.2022.134393

de Souza, L., Lima, A. S., Matos, Â. P., Wheeler, R. M., Bork, J. A., Vieira Cubas, A. L., & Moecke, E. H. S. (2021). Biopolishing sanitary landfill leachate via cultivation of lipid-rich Scenedesmus microalgae. Journal of Cleaner Production, 303, 127094. https://doi.org/10.1016/j.jclepro.2021.127094

Dowling, P. M. (2013). Chloramphenicol, Thiamphenicol, and Florfenicol. In Antimicrobial Therapy in Veterinary Medicine (pp. 269–277). Wiley. https://doi.org/10.1002/9781118675014.ch16

Durão, P., Balbontín, R., & Gordo, I. (2018). Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends in Microbiology, 26(8), 677–691. https://doi.org/10.1016/j.tim.2018.01.005

Ende, S. S. W., & Noke, A. (2019). Heterotrophic microalgae production on food waste and by-products. Journal of Applied Phycology, 31(3), 1565–1571. https://doi.org/10.1007/s10811-018-1697-6

Esmaili, Z., Cheshmberah, F., Solaimany Nazar, A. R., & Farhadian, M. (2017). Treatment of florfenicol of synthetic trout fish farm wastewater through nanofiltration and photocatalyst oxidation. Environmental Technology, 38(16), 2040–2047. https://doi.org/10.1080/09593330.2016.1245359

Freitas, E. C., Rocha, O., & Espíndola, E. L. G. (2018). Effects of florfenicol and oxytetracycline on the tropical cladoceran Ceriodaphnia silvestrii: A mixture toxicity approach to predict the potential risks of antimicrobials for zooplankton. Ecotoxicology and Environmental Safety, 162, 663–672. https://doi.org/10.1016/j.ecoenv.2018.06.073

Ghernaout, D., & Elboughdiri, N. (2019). Water Reuse: Emerging Contaminants Elimination—Progress and Trends. OALib, 06(12), 1–9. https://doi.org/10.4236/oalib.1105981

Giraldo-Zuluaga, J.-H., Salazar, A., Diez, G., Gomez, A., Martínez, T., Vargas, J. F., & Peñuela, M. (2018). Automatic identification of Scenedesmus polymorphic microalgae from microscopic images. Pattern Analysis and Applications, 21(2), 601–612. https://doi.org/10.1007/s10044-017-0662-3

Goodale, A., Michailidis, F., Watts, R., Chok, S. C., & Hayes, F. (2020). Characterization of permissive and non-permissive peptide insertion sites in chloramphenicol acetyltransferase. Microbial Pathogenesis, 149, 104395. https://doi.org/10.1016/j.micpath.2020.104395

Gradmann, C. (n.d.). Magic bullets and moving targets: antibiotic resistance and experimental chemotherapy, 1900-1940.

Guilhermino, L., Vieira, L. R., Ribeiro, D., Tavares, A. S., Cardoso, V., Alves, A., & Almeida, J. M. (2018). Uptake and effects of the antimicrobial florfenicol, microplastics and their mixtures on freshwater exotic invasive bivalve Corbicula fluminea. Science of The Total Environment, 622–623, 1131–1142. https://doi.org/10.1016/j.scitotenv.2017.12.020

Guzmán-Blanco, M., Casellas, J. M., & Silva Sader, H. (2000). BACTERIAL RESISTANCE TO ANTIMICROBIAL AGENTS IN LATIN AMERICA. Infectious Disease Clinics of North America, 14(1), 67–81. https://doi.org/10.1016/S0891-5520(05)70218-X

Hossain, N., Zaini, J., Mahlia, T. M. I., & Azad, A. K. (2019). Elemental, morphological and thermal analysis of mixed microalgae species from drain water. Renewable Energy, 131, 617–624. https://doi.org/10.1016/j.renene.2018.07.082

Hosseinizand, H., Sokhansanj, S., & Lim, C. J. (2018). Co-pelletization of microalgae Chlorella vulgaris and pine sawdust to produce solid fuels. Fuel Processing Technology, 177, 129–139. https://doi.org/10.1016/j.fuproc.2018.04.015

Ibrahim, W. M., Karam, M. A., El-Shahat, R. M., & Adway, A. A. (2014). Biodegradation and Utilization of Organophosphorus Pesticide Malathion by Cyanobacteria. BioMed Research International, 2014, 1–6. https://doi.org/10.1155/2014/392682

Javid, A., Mesdaghinia, A., Nasseri, S., Mahvi, A. H., Alimohammadi, M., & Gharibi, H. (2016). Assessment of tetracycline contamination in surface and groundwater resources proximal to animal farming houses in Tehran, Iran. Journal of Environmental Health Science and Engineering, 14(1), 4. https://doi.org/10.1186/s40201-016-0245-z

Jiang, W.-L., Ding, Y.-C., Haider, M. R., Han, J.-L., Liang, B., Xia, X., Yang, L.-M., Wang, H., Peng, Y.-Z., & Wang, A.-J. (2020). A novel TiO2/graphite felt photoanode assisted electro-Fenton catalytic membrane process for sequential degradation of antibiotic florfenicol and elimination of its antibacterial activity. Chemical Engineering Journal, 391, 123503. https://doi.org/10.1016/j.cej.2019.123503

Jin, M., Shan, J., Wang, X., Ren, T., & Li, X. (2022). Determination of Florfenicol in Antibiotic Mixtures by Solid-Phase Extraction (SPE) and Surface-Enhanced Raman Scattering (SERS). Analytical Letters, 55(4), 517–528. https://doi.org/10.1080/00032719.2021.1946075

Gutiérrez Muñoz, J. (2021). Costos de inversión y beneficios del tratamiento de aguas residuales domésticas en el Municipio de Zipaquirá.

Hoyos-Leyva, J. D., Daza-Orozco, C. E., & Norman-Acevedo, E. (2024). De preguntas a soluciones: Innovación y sostenibilidad. Libros IC, 77(84), 1–151. https://doi.org/10.15765/librosic.v77i84.55

Kaloudas, D., Pavlova, N., & Penchovsky, R. (2021). Phycoremediation of wastewater by microalgae: a review. Environmental Chemistry Letters, 19(4), 2905–2920. https://doi.org/10.1007/s10311-021-01203-0

Karim Dizani, S., Torkian, L., Khodadadi, Z., Fazaeli, R., & Safa, S. (2021). Fabrication of cubic In 2 O 3 / Bi 2 WO 6 and study of its photocatalytic performance in removal of florfenicol antibiotic from aqueous media: Experimental and molecular dynamic simulation. Journal of the Chinese Chemical Society, 68(2), 263–273. https://doi.org/10.1002/jccs.202000116

Kar, S., Sanderson, H., Roy, K., Benfenati, E., & Leszczynski, J. (2020). Ecotoxicological assessment of pharmaceuticals and personal care products using predictive toxicology approaches. Green Chemistry, 22(5), 1458–1516. https://doi.org/10.1039/C9GC03265G

Knoshaug, E. P., Nag, A., Astling, D. P., Douchi, D., & Laurens, L. M. L. (2020). Draft Genome Sequence of the Biofuel-Relevant Microalga Desmodesmus armatus. Microbiology Resource Announcements, 9(6). https://doi.org/10.1128/MRA.00896-19

Kuppusamy, S., Kakarla, D., Venkateswarlu, K., Megharaj, M., Yoon, Y.-E., & Lee, Y. B. (2018). Veterinary antibiotics (VAs) contamination as a global agro-ecological issue: A critical view. Agriculture, Ecosystems & Environment, 257, 47–59. https://doi.org/10.1016/j.agee.2018.01.026

Largitte, L., & Pasquier, R. (2016). A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design, 109, 495–504. https://doi.org/10.1016/j.cherd.2016.02.006

Larsen, C., Yu, Z. H., Flick, R., & Passeport, E. (2019). Mechanisms of pharmaceutical and personal care product removal in algae-based wastewater treatment systems. Science of The Total Environment, 695, 133772. https://doi.org/10.1016/j.scitotenv.2019.133772

Leng, L., Wei, L., Xiong, Q., Xu, S., Li, W., Lv, S., Lu, Q., Wan, L., Wen, Z., & Zhou, W. (2020). Use of microalgae based technology for the removal of antibiotics from wastewater: A review. Chemosphere, 238, 124680. https://doi.org/10.1016/J.CHEMOSPHERE.2019.124680

Li, H., Chen, S., Liao, K., Lu, Q., & Zhou, W. (2021). Microalgae biotechnology as a promising pathway to ecofriendly aquaculture: a state‐of‐the‐art review. Journal of Chemical Technology & Biotechnology, 96(4), 837–852. https://doi.org/10.1002/jctb.6624

Lin, Y., Abraham, J., RoyChowdhury, A., Su, T.-L., Braida, W., & Christodoulatos, C. (2020). Ecotoxicological response of Scenedesmus obliquus to pure energetic compounds and metal ions found in wastewater streams from munitions manufacturing. Algal Research, 48, 101927. https://doi.org/10.1016/j.algal.2020.101927

Li, P., Zhu, T., Zhou, D., Lu, W., Liu, H., Sun, Z., Ying, J., Lu, J., Lin, X., Li, K., Ying, J., Bao, Q., & Xu, T. (2020). Analysis of Resistance to Florfenicol and the Related Mechanism of Dissemination in Different Animal-Derived Bacteria. Frontiers in Cellular and Infection Microbiology, 10. https://doi.org/10.3389/fcimb.2020.00369

Liu, H., Wei, Y., Luo, J., Li, T., Wang, D., Luo, S., & Crittenden, J. C. (2019). 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water. Chemical Engineering Journal, 368, 639–648. https://doi.org/10.1016/j.cej.2019.03.007

Liu, X., Lu, S., Guo, W., Xi, B., & Wang, W. (2018). Antibiotics in the aquatic environments: A review of lakes, China. Science of The Total Environment, 627, 1195–1208. https://doi.org/10.1016/j.scitotenv.2018.01.271

López-Pacheco, I. Y., Silva-Núñez, A., Salinas-Salazar, C., Arévalo-Gallegos, A., Lizarazo-Holguin, L. A., Barceló, D., Iqbal, H. M. N., & Parra-Saldívar, R. (2019). Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. Science of The Total Environment, 690, 1068–1088. https://doi.org/10.1016/j.scitotenv.2019.07.052

Mallek-Ayadi, S., Bahloul, N., & Kechaou, N. (2020). Mathematical modelling of water sorption isotherms and thermodynamic properties of Cucumis melo L. seeds. LWT, 131, 109727. https://doi.org/10.1016/j.lwt.2020.109727

Martinez, J. L. (2009). Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157(11), 2893–2902. https://doi.org/10.1016/j.envpol.2009.05.051

Maryjoseph, S., & Ketheesan, B. (2020). Microalgae based wastewater treatment for the removal of emerging contaminants: A review of challenges and opportunities. Case Studies in Chemical and Environmental Engineering, 2, 100046. https://doi.org/10.1016/j.cscee.2020.100046

Mills, M. C., & Lee, J. (2019). The threat of carbapenem-resistant bacteria in the environment: Evidence of widespread contamination of reservoirs at a global scale. Environmental Pollution, 255, 113143. https://doi.org/10.1016/j.envpol.2019.113143

Mitchell, S. M., Subbiah, M., Ullman, J. L., Frear, C., & Call, D. R. (2015). Evaluation of 27 different biochars for potential sequestration of antibiotic residues in food animal production environments. Journal of Environmental Chemical Engineering, 3(1), 162–169. https://doi.org/10.1016/j.jece.2014.11.012

Moore, F. D. (1999). The advent of antibiotics: Episodes from the early days of the “miracle drugs.” Surgery, 126(1), 83–84. https://doi.org/10.1067/msy.1999.98701

Multivariate Curve Resolution Homepage. (2021). MCR-ALS 2.0 toolbox.

Mustafa, S., Bhatti, H. N., Maqbool, M., & Iqbal, M. (2021). Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: Prospects, challenges and opportunities. Journal of Water Process Engineering, 41, 102009. https://doi.org/10.1016/j.jwpe.2021.102009

Ngigi, A. N., Ok, Y. S., & Thiele-Bruhn, S. (2019). Biochar-mediated sorption of antibiotics in pig manure. Journal of Hazardous Materials, 364, 663–670. https://doi.org/10.1016/j.jhazmat.2018.10.045

Nicolaou, K. C., & Rigol, S. (2018). A brief history of antibiotics and select advances in their synthesis. The Journal of Antibiotics, 71(2), 153–184. https://doi.org/10.1038/ja.2017.62

Nie, J., Sun, Y., Zhou, Y., Kumar, M., Usman, M., Li, J., Shao, J., Wang, L., & Tsang, D. C. W. (2020). Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Science of The Total Environment, 707, 136080. https://doi.org/10.1016/j.scitotenv.2019.136080

Ortiz-Villota, M. T., Romero-Morales, M. A., & Meza-Rodríguez, L. D. (2018). La biorremediación con microalgas (Spirulina máxima, Spirulina platensis y Chlorella vulgaris) como alternativa para tratar la eutrofización de la laguna de Ubaque, Colombia. Revista de Investigación, Desarrollo e Innovación, 9(1), 163–176. https://doi.org/10.19053/20278306.v9.n1.2018.8153

Parades-Aguilar, J., Reyes-Martínez, V., Bustamante, G., Almendáriz-Tapia, F. J., Martínez-Meza, G., Vílchez-Vargas, R., Link, A., Certucha-Barragán, M. T., & Calderón, K. (2021). Removal of nickel(II) from wastewater using a zeolite-packed anaerobic bioreactor: Bacterial diversity and community structure shifts. Journal of Environmental Management, 279, 111558. https://doi.org/10.1016/j.jenvman.2020.111558

Partovinia, A., & Rasekh, B. (2018). Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments. Critical Reviews in Environmental Science and Technology, 48(1), 1–38. https://doi.org/10.1080/10643389.2018.1439652

Peña-Guzmán, C., Ulloa-Sánchez, S., Mora, K., Helena-Bustos, R., Lopez-Barrera, E., Alvarez, J., & Rodriguez-Pinzón, M. (2019). Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. Journal of Environmental Management, 237, 408–423. https://doi.org/10.1016/j.jenvman.2019.02.100

Peng, G., He, Q., Al-Hamadani, S. M. Z. F., Zhou, G., Liu, M., Zhu, H., & Chen, J. (2015). Dispersive liquid–liquid microextraction method based on solidification of floating organic droplet for the determination of thiamphenicol and florfenicol in environmental water samples. Ecotoxicology and Environmental Safety, 115, 229–233. https://doi.org/10.1016/j.ecoenv.2015.02.025

Pokrant, E., Riquelme, R., Maddaleno, A., San Martín, B., & Cornejo, J. (2018). Residue Depletion of Florfenicol and Florfenicol Amine in Broiler Chicken Claws and a Comparison of Their Concentrations in Edible Tissues Using LC–MS/MS. Molecules, 23(9), 2211. https://doi.org/10.3390/molecules23092211

Qiu, J., Liu, Q., Zhang, M., Li, X., Zhang, J., Xiong, R., & He, L. (2020). Simultaneous Determination of Aminoglycoside Residues in Environmental Water Matrices by Lyophilization Combined with Liquid Chromatography–Tandem Mass Spectrometry (LC-MS/MS). Analytical Letters, 53(14), 2235–2251. https://doi.org/10.1080/00032719.2020.1734606

Ramírez S, J. A., Parra V., J. A., & Alvarez Aldana, A. (2017). Análisis de técnicas de recuento de Microorganismos. Mente Joven, 6, 01–08. https://doi.org/10.18041/2323-0312/mente_joven.0.2017.3665

Ribeiro, A. R., Sures, B., & Schmidt, T. C. (2018). Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies. Environmental Pollution, 241, 1153–1166. https://doi.org/10.1016/j.envpol.2018.06.040

Richardson, S. D., & Kimura, S. Y. (2020). Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry, 92(1), 473–505. https://doi.org/10.1021/acs.analchem.9b05269

Rodas-Zuluaga, L. I., Castañeda-Hernández, L., Castillo-Vacas, E. I., Gradiz-Menjivar, A., López-Pacheco, I. Y., Castillo-Zacarías, C., Boully, L., Iqbal, H. M. N., & Parra-Saldívar, R. (2021). Bio-capture and influence of CO2 on the growth rate and biomass composition of the microalgae Botryococcus braunii and Scenedesmus sp. Journal of CO2 Utilization, 43, 101371. https://doi.org/10.1016/j.jcou.2020.101371

Rodríguez, A., Castrejón-Godínez, M. L., Salazar-Bustamante, E., Gama-Martínez, Y., Sánchez-Salinas, E., Mussali-Galante, P., Tovar-Sánchez, E., & Ortiz-Hernández, Ma. L. (2020). Omics Approaches to Pesticide Biodegradation. Current Microbiology, 77(4), 545–563. https://doi.org/10.1007/s00284-020-01916-5

Rodríguez Moreira, D. S., & Villarreal Lozada, G. S. (2020). Estudio comparativo de dos medios de cultivo (guillard f/2 vs. medio erd-schreiber) y su efecto en el crecimiento de diatomeas del sector de Mar Bravo - provincia de Santa Elena. Universidad Estatal Península de Santa Elena.

Sadeghi, M., Sadeghi, R., Ghasemi, B., Mardani, G., & Ahmadi, A. (2018). Removal of Azithromycin from Aqueous Solution Using UV-Light Alone and UV Plus Persulfate (UV/Na2S2O8) Processes. Iranian Journal of Pharmaceutical Research, 54–64.

Sahu, O., & Singh, N. (2019). Significance of bioadsorption process on textile industry wastewater. In The Impact and Prospects of Green Chemistry for Textile Technology (pp. 367–416). Elsevier. https://doi.org/10.1016/B978-0-08-102491-1.00013-7

Santaeufemia, S. (2019). Aplicación de técnicas de biorremediación para la eliminación de contaminantes mediante el uso de biomasa microalgal. Universidade da Coruña.

Serna-Galvis, E., Martínez-Mena, Y. L., Porras, J., & Torres-Palma, R. A. (2021). Antibióticos de alto consumo en Colombia, excreción en orina y presencia en aguas residuales – una revisión bibliográfica. INGENIERÍA Y COMPETITIVIDAD, 24(1). https://doi.org/10.25100/iyc.v24i1.11267

Shiroma, L. S., Soares, M. P., Cardoso, I. L., Ishikawa, M. M., Jonsson, C. M., & Nascimento Queiroz, S. C. (2020). Evaluation of health and environmental risks for juvenile tilapia (Oreochromis niloticus) exposed to florfenicol. Heliyon, 6(12), e05716. https://doi.org/10.1016/j.heliyon.2020.e05716

Silva, A., Coimbra, R. N., Escapa, C., Figueiredo, S. A., Freitas, O. M., & Otero, M. (2020). Green Microalgae Scenedesmus Obliquus Utilization for the Adsorptive Removal of Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) from Water Samples. International Journal of Environmental Research and Public Health, 17(10), 3707. https://doi.org/10.3390/ijerph17103707

Soares, J., Kriiger Loterio, R., Rosa, R. M., Santos, M. O., Nascimento, A. G., Santos, N. T., Williams, T. C. R., Nunes-Nesi, A., & Arêdes Martins, M. (2018). Scenedesmus sp. cultivation using commercial-grade ammonium sources. Annals of Microbiology, 68(1), 35–45. https://doi.org/10.1007/s13213-017-1315-x

Song, C., Wei, Y., Qiu, Y., Qi, Y., Li, Y., & Kitamura, Y. (2019a). Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38: Experimental study. Bioresource Technology, 272, 529–534. https://doi.org/10.1016/j.biortech.2018.10.080

Song, C., Wei, Y., Qiu, Y., Qi, Y., Li, Y., & Kitamura, Y. (2019b). Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38: Experimental study. Bioresource Technology, 272, 529–534. https://doi.org/10.1016/j.biortech.2018.10.080

Song, X., Zhou, T., Li, J., Zhang, M., Xie, J., & He, L. (2018). Determination of Ten Macrolide Drugs in Environmental Water Using Molecularly Imprinted Solid-Phase Extraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry. Molecules, 23(5), 1172. https://doi.org/10.3390/molecules23051172

Suárez-Martínez, D., Angulo-Mercado, E., Mercado-Martínez, I., Vacca-Jimeno, V., Tapia-Larios, C., & Cubillán, N. (2022). Enhanced Tetracycline Removal from Highly Concentrated Aqueous Media by Lipid-Free Chlorella sp. Biomass. ACS Omega, acsomega.2c00696. https://doi.org/10.1021/acsomega.2c00696

Syafrudin, M., Kristanti, R. A., Yuniarto, A., Hadibarata, T., Rhee, J., Al-onazi, W. A., Algarni, T. S., Almarri, A. H., & Al-Mohaimeed, A. M. (2021). Pesticides in Drinking Water—A Review. International Journal of Environmental Research and Public Health, 18(2), 468. https://doi.org/10.3390/ijerph18020468

Tao, W., Lee, M. H., Wu, J., Kim, N. H., Kim, J.-C., Chung, E., Hwang, E. C., & Lee, S.-W. (2012). Inactivation of Chloramphenicol and Florfenicol by a Novel Chloramphenicol Hydrolase. Applied and Environmental Microbiology, 78(17), 6295–6301. https://doi.org/10.1128/AEM.01154-12

Trivedi, H. K. (2013). A Rapid Validated RP-HPLC Method for the Simultaneous Determination of Cleaning Validation and Cross Contamination of 12 Beta-Lactam Compounds. Scientia Pharmaceutica, 81(1), 151–165. https://doi.org/10.3797/scipharm.1208-20

Ummalyma, S. B., Pandey, A., Sukumaran, R. K., & Sahoo, D. (2018). Bioremediation by Microalgae: Current and Emerging Trends for Effluents Treatments for Value Addition of Waste Streams (pp. 355–375). https://doi.org/10.1007/978-981-10-7434-9_19

Vandael, F., de Carvalho Ferreira, H. C., Devreese, M., Dewulf, J., Daeseleire, E., Eeckhout, M., & Croubels, S. (2020). Stability, Homogeneity and Carry-Over of Amoxicillin, Doxycycline, Florfenicol and Flubendazole in Medicated Feed and Drinking Water on 24 Pig Farms. Antibiotics, 9(9), 563. https://doi.org/10.3390/antibiotics9090563

Wang, C., Dong, D., Zhang, L., Song, Z., Hua, X., & Guo, Z. (2019). Response of Freshwater Biofilms to Antibiotic Florfenicol and Ofloxacin Stress: Role of Extracellular Polymeric Substances. International Journal of Environmental Research and Public Health, 16(5), 715. https://doi.org/10.3390/ijerph16050715

Wang, C.-H., Hsieh, Y.-H., Powers, Z. M., & Kao, C.-Y. (2020). Defeating Antibiotic-Resistant Bacteria: Exploring Alternative Therapies for a Post-Antibiotic Era. International Journal of Molecular Sciences, 21(3), 1061. https://doi.org/10.3390/ijms21031061

Wang, J., & Guo, X. (2020). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279. https://doi.org/10.1016/j.chemosphere.2020.127279

Wang, S., Yerkebulan, M., Abomohra, A. E.-F., El-Khodary, S., & Wang, Q. (2019). Microalgae harvest influences the energy recovery: A case study on chemical flocculation of Scenedesmus obliquus for biodiesel and crude bio-oil production. Bioresource Technology, 286, 121371. https://doi.org/10.1016/j.biortech.2019.121371

Wang, X. D., Lu, Y. C., Xiong, X. H., Yuan, Y., Lu, L. X., Liu, Y. J., Mao, J. H., & Xiao, W. W. (2020). Toxicological responses, bioaccumulation, and metabolic fate of triclosan in Chlamydomonas reinhardtii. Environmental Science and Pollution Research, 27(10), 11246–11259. https://doi.org/10.1007/s11356-020-07704-9

Wang, Y., Zhang, L., Ahmed, S., Liu, Y., & Li, X. (2018). Pharmacokinetic of florfenicol in pulmonary epithelial lining fluid of swine and effects of anesthetic agent on drug plasma disposition kinetics. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 70(5), 1497–1504. https://doi.org/10.1590/1678-4162-9770

Wei, R., Ge, F., Chen, M., & Wang, R. (2012). Occurrence of Ciprofloxacin, Enrofloxacin, and Florfenicol in Animal Wastewater and Water Resources. Journal of Environmental Quality, 41(5), 1481–1486. https://doi.org/10.2134/jeq2012.0014

Xiong, J.-Q., Kim, S.-J., Kurade, M. B., Govindwar, S., Abou-Shanab, R. A. I., Kim, J.-R., Roh, H.-S., Khan, M. A., & Jeon, B.-H. (2019). Combined effects of sulfamethazine and sulfamethoxazole on a freshwater microalga, Scenedesmus obliquus: toxicity, biodegradation, and metabolic fate. Journal of Hazardous Materials, 370, 138–146. https://doi.org/10.1016/j.jhazmat.2018.07.049

Xiong, Q., Hu, L. X., Liu, Y. S., Zhao, J. L., He, L. Y., & Ying, G. G. (2021). Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. Environment International, 155, 106594. https://doi.org/10.1016/J.ENVINT.2021.106594

Yang, X., Xu, G., Yu, H., & Zhang, Z. (2016). Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal. Bioresource Technology, 211, 566–573. https://doi.org/10.1016/j.biortech.2016.03.140

Yang, Y., Li, T., Yan, L., Yu, Y., Wang, S., Li, C., Wen, Y., & Zhao, Y. (2018). Investigation on the relationship between critical body residue and bioconcentration in zebrafish based on bio-uptake kinetics for five nitro-aromatics. Regulatory Toxicology and Pharmacology, 98, 18–23. https://doi.org/10.1016/j.yrtph.2018.07.002

Yévenes, K., Pokrant, E., Pérez, F., Riquelme, R., Avello, C., Maddaleno, A., Martín, B. S., & Cornejo, J. (2018). Assessment of Three Antimicrobial Residue Concentrations in Broiler Chicken Droppings as a Potential Risk Factor for Public Health and Environment. International Journal of Environmental Research and Public Health, 16(1), 24. https://doi.org/10.3390/ijerph16010024

Zambrano, J., García-Encina, P. A., Hernández, F., Botero-Coy, A. M., Jiménez, J. J., & Irusta-Mata, R. (2021). Removal of a mixture of veterinary medicinal products by adsorption onto a Scenedesmus almeriensis microalgae-bacteria consortium. Journal of Water Process Engineering, 43, 102226. https://doi.org/10.1016/J.JWPE.2021.102226

Zhao, H., & Lang, Y. (2018). Adsorption behaviors and mechanisms of florfenicol by magnetic functionalized biochar and reed biochar. Journal of the Taiwan Institute of Chemical Engineers, 88, 152–160. https://doi.org/10.1016/j.jtice.2018.03.049

Zhao, H., Liu, X., Cao, Z., Zhan, Y., Shi, X., Yang, Y., Zhou, J., & Xu, J. (2016). Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. Journal of Hazardous Materials, 310, 235–245. https://doi.org/10.1016/j.jhazmat.2016.02.045

Zheng, C., Zheng, H., Hu, C., Wang, Y., Wang, Y., Zhao, C., Ding, W., & Sun, Q. (2020). Structural design of magnetic biosorbents for the removal of ciprofloxacin from water. Bioresource Technology, 296, 122288. https://doi.org/10.1016/j.biortech.2019.122288

Zhou, D., Li, Y., Huang, L., Qian, M., Li, D., Sun, G., & Yang, B. (2020). A reliable and cost-efficient TLC-HPLC method for determining total florfenicol residues in porcine edible tissues. Food Chemistry, 303, 125399. https://doi.org/10.1016/j.foodchem.2019.125399

Zhou, X., Jin, W., Tu, R., Guo, Q., Han, S. fang, Chen, C., Wang, Q., Liu, W., Jensen, P. D., & Wang, Q. (2019). Optimization of microwave assisted lipid extraction from microalga Scenedesmus obliquus grown on municipal wastewater. Journal of Cleaner Production, 221. https://doi.org/10.1016/j.jclepro.2019.02.260